Cainvas
Model Files
asteroid.h5
keras
Model
deepSea Compiled Models
asteroid.exe
deepSea
Ubuntu

Asteroid classification

Credit: AITS Cainvas Community

Photo by Christopher Jones on Dribbble

Classifying asteroids as hazardous or non-hazardous based on various factors such as speed, distance, mass etc.

In [1]:
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.metrics import confusion_matrix
import random
import matplotlib.pyplot as plt
from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Sequential
from tensorflow.keras.losses import BinaryCrossentropy
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping

The dataset

The datatset is a CSV file with attributes of asteroids such as distance from earth, velocity, orbit overlap etc that help us identify hazardous from non-hazardous ones.

In [2]:
df = pd.read_csv('https://cainvas-static.s3.amazonaws.com/media/user_data/cainvas-admin/nasa.csv')
df
Out[2]:
Neo Reference ID Name Absolute Magnitude Est Dia in KM(min) Est Dia in KM(max) Est Dia in M(min) Est Dia in M(max) Est Dia in Miles(min) Est Dia in Miles(max) Est Dia in Feet(min) ... Asc Node Longitude Orbital Period Perihelion Distance Perihelion Arg Aphelion Dist Perihelion Time Mean Anomaly Mean Motion Equinox Hazardous
0 3703080 3703080 21.600 0.127220 0.284472 127.219879 284.472297 0.079051 0.176763 417.388066 ... 314.373913 609.599786 0.808259 57.257470 2.005764 2.458162e+06 264.837533 0.590551 J2000 True
1 3723955 3723955 21.300 0.146068 0.326618 146.067964 326.617897 0.090762 0.202951 479.225620 ... 136.717242 425.869294 0.718200 313.091975 1.497352 2.457795e+06 173.741112 0.845330 J2000 False
2 2446862 2446862 20.300 0.231502 0.517654 231.502122 517.654482 0.143849 0.321655 759.521423 ... 259.475979 643.580228 0.950791 248.415038 1.966857 2.458120e+06 292.893654 0.559371 J2000 True
3 3092506 3092506 27.400 0.008801 0.019681 8.801465 19.680675 0.005469 0.012229 28.876199 ... 57.173266 514.082140 0.983902 18.707701 1.527904 2.457902e+06 68.741007 0.700277 J2000 False
4 3514799 3514799 21.600 0.127220 0.284472 127.219879 284.472297 0.079051 0.176763 417.388066 ... 84.629307 495.597821 0.967687 158.263596 1.483543 2.457814e+06 135.142133 0.726395 J2000 True
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
4682 3759007 3759007 23.900 0.044112 0.098637 44.111820 98.637028 0.027410 0.061290 144.723824 ... 164.183305 457.179984 0.741558 276.395697 1.581299 2.457708e+06 304.306025 0.787436 J2000 False
4683 3759295 3759295 28.200 0.006089 0.013616 6.089126 13.615700 0.003784 0.008460 19.977449 ... 345.225230 407.185767 0.996434 42.111064 1.153835 2.458088e+06 282.978786 0.884117 J2000 False
4684 3759714 3759714 22.700 0.076658 0.171412 76.657557 171.411509 0.047633 0.106510 251.501180 ... 37.026468 690.054279 0.965760 274.692712 2.090708 2.458300e+06 203.501147 0.521698 J2000 False
4685 3759720 3759720 21.800 0.116026 0.259442 116.025908 259.441818 0.072095 0.161210 380.662441 ... 163.802910 662.048343 1.185467 180.346090 1.787733 2.458288e+06 203.524965 0.543767 J2000 False
4686 3772978 3772978 19.109 0.400641 0.895860 400.640618 895.859655 0.248946 0.556661 1314.437764 ... 187.642183 653.679098 0.876110 222.436688 2.071980 2.458319e+06 184.820424 0.550729 J2000 False

4687 rows × 40 columns

Data preprocessing

Data cleaning/Fetaure extraction

In [3]:
# Peek into the columns

df.columns
Out[3]:
Index(['Neo Reference ID', 'Name', 'Absolute Magnitude', 'Est Dia in KM(min)',
       'Est Dia in KM(max)', 'Est Dia in M(min)', 'Est Dia in M(max)',
       'Est Dia in Miles(min)', 'Est Dia in Miles(max)',
       'Est Dia in Feet(min)', 'Est Dia in Feet(max)', 'Close Approach Date',
       'Epoch Date Close Approach', 'Relative Velocity km per sec',
       'Relative Velocity km per hr', 'Miles per hour',
       'Miss Dist.(Astronomical)', 'Miss Dist.(lunar)',
       'Miss Dist.(kilometers)', 'Miss Dist.(miles)', 'Orbiting Body',
       'Orbit ID', 'Orbit Determination Date', 'Orbit Uncertainity',
       'Minimum Orbit Intersection', 'Jupiter Tisserand Invariant',
       'Epoch Osculation', 'Eccentricity', 'Semi Major Axis', 'Inclination',
       'Asc Node Longitude', 'Orbital Period', 'Perihelion Distance',
       'Perihelion Arg', 'Aphelion Dist', 'Perihelion Time', 'Mean Anomaly',
       'Mean Motion', 'Equinox', 'Hazardous'],
      dtype='object')
In [4]:
# Understanding the datatypes of the columns

df.dtypes
Out[4]:
Neo Reference ID                  int64
Name                              int64
Absolute Magnitude              float64
Est Dia in KM(min)              float64
Est Dia in KM(max)              float64
Est Dia in M(min)               float64
Est Dia in M(max)               float64
Est Dia in Miles(min)           float64
Est Dia in Miles(max)           float64
Est Dia in Feet(min)            float64
Est Dia in Feet(max)            float64
Close Approach Date              object
Epoch Date Close Approach         int64
Relative Velocity km per sec    float64
Relative Velocity km per hr     float64
Miles per hour                  float64
Miss Dist.(Astronomical)        float64
Miss Dist.(lunar)               float64
Miss Dist.(kilometers)          float64
Miss Dist.(miles)               float64
Orbiting Body                    object
Orbit ID                          int64
Orbit Determination Date         object
Orbit Uncertainity                int64
Minimum Orbit Intersection      float64
Jupiter Tisserand Invariant     float64
Epoch Osculation                float64
Eccentricity                    float64
Semi Major Axis                 float64
Inclination                     float64
Asc Node Longitude              float64
Orbital Period                  float64
Perihelion Distance             float64
Perihelion Arg                  float64
Aphelion Dist                   float64
Perihelion Time                 float64
Mean Anomaly                    float64
Mean Motion                     float64
Equinox                          object
Hazardous                          bool
dtype: object
In [5]:
# What are the contents of the Equinox column?

df['Equinox'].value_counts()
Out[5]:
J2000    4687
Name: Equinox, dtype: int64
In [6]:
# Drop unnecessary columns

df = df.drop(columns = ['Neo Reference ID', 'Name', 'Equinox', 'Close Approach Date', 'Orbit Determination Date', 'Orbiting Body', 'Epoch Date Close Approach'])
df
Out[6]:
Absolute Magnitude Est Dia in KM(min) Est Dia in KM(max) Est Dia in M(min) Est Dia in M(max) Est Dia in Miles(min) Est Dia in Miles(max) Est Dia in Feet(min) Est Dia in Feet(max) Relative Velocity km per sec ... Inclination Asc Node Longitude Orbital Period Perihelion Distance Perihelion Arg Aphelion Dist Perihelion Time Mean Anomaly Mean Motion Hazardous
0 21.600 0.127220 0.284472 127.219879 284.472297 0.079051 0.176763 417.388066 933.308089 6.115834 ... 6.025981 314.373913 609.599786 0.808259 57.257470 2.005764 2.458162e+06 264.837533 0.590551 True
1 21.300 0.146068 0.326618 146.067964 326.617897 0.090762 0.202951 479.225620 1071.581063 18.113985 ... 28.412996 136.717242 425.869294 0.718200 313.091975 1.497352 2.457795e+06 173.741112 0.845330 False
2 20.300 0.231502 0.517654 231.502122 517.654482 0.143849 0.321655 759.521423 1698.341531 7.590711 ... 4.237961 259.475979 643.580228 0.950791 248.415038 1.966857 2.458120e+06 292.893654 0.559371 True
3 27.400 0.008801 0.019681 8.801465 19.680675 0.005469 0.012229 28.876199 64.569144 11.173874 ... 7.905894 57.173266 514.082140 0.983902 18.707701 1.527904 2.457902e+06 68.741007 0.700277 False
4 21.600 0.127220 0.284472 127.219879 284.472297 0.079051 0.176763 417.388066 933.308089 9.840831 ... 16.793382 84.629307 495.597821 0.967687 158.263596 1.483543 2.457814e+06 135.142133 0.726395 True
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
4682 23.900 0.044112 0.098637 44.111820 98.637028 0.027410 0.061290 144.723824 323.612307 22.154265 ... 39.880491 164.183305 457.179984 0.741558 276.395697 1.581299 2.457708e+06 304.306025 0.787436 False
4683 28.200 0.006089 0.013616 6.089126 13.615700 0.003784 0.008460 19.977449 44.670934 3.225150 ... 5.360249 345.225230 407.185767 0.996434 42.111064 1.153835 2.458088e+06 282.978786 0.884117 False
4684 22.700 0.076658 0.171412 76.657557 171.411509 0.047633 0.106510 251.501180 562.373736 7.191642 ... 4.405467 37.026468 690.054279 0.965760 274.692712 2.090708 2.458300e+06 203.501147 0.521698 False
4685 21.800 0.116026 0.259442 116.025908 259.441818 0.072095 0.161210 380.662441 851.187094 11.352090 ... 21.080244 163.802910 662.048343 1.185467 180.346090 1.787733 2.458288e+06 203.524965 0.543767 False
4686 19.109 0.400641 0.895860 400.640618 895.859655 0.248946 0.556661 1314.437764 2939.172192 35.946852 ... 53.574923 187.642183 653.679098 0.876110 222.436688 2.071980 2.458319e+06 184.820424 0.550729 False

4687 rows × 33 columns

In [7]:
# Lets look at the correlation between the various attributes

corr = df.corr()
corr
Out[7]:
Absolute Magnitude Est Dia in KM(min) Est Dia in KM(max) Est Dia in M(min) Est Dia in M(max) Est Dia in Miles(min) Est Dia in Miles(max) Est Dia in Feet(min) Est Dia in Feet(max) Relative Velocity km per sec ... Inclination Asc Node Longitude Orbital Period Perihelion Distance Perihelion Arg Aphelion Dist Perihelion Time Mean Anomaly Mean Motion Hazardous
Absolute Magnitude 1.000000 -0.613482 -0.613482 -0.613482 -0.613482 -0.613482 -0.613482 -0.613482 -0.613482 -0.376853 ... -0.459632 -0.011470 -0.206774 0.086966 0.031784 -0.256169 -0.115855 -0.049401 0.195652 -0.325522
Est Dia in KM(min) -0.613482 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.242141 ... 0.259450 0.036558 0.118314 -0.071866 -0.019577 0.151836 0.062167 0.031455 -0.104350 0.132424
Est Dia in KM(max) -0.613482 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.242141 ... 0.259450 0.036558 0.118314 -0.071866 -0.019577 0.151836 0.062167 0.031455 -0.104350 0.132424
Est Dia in M(min) -0.613482 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.242141 ... 0.259450 0.036558 0.118314 -0.071866 -0.019577 0.151836 0.062167 0.031455 -0.104350 0.132424
Est Dia in M(max) -0.613482 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.242141 ... 0.259450 0.036558 0.118314 -0.071866 -0.019577 0.151836 0.062167 0.031455 -0.104350 0.132424
Est Dia in Miles(min) -0.613482 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.242141 ... 0.259450 0.036558 0.118314 -0.071866 -0.019577 0.151836 0.062167 0.031455 -0.104350 0.132424
Est Dia in Miles(max) -0.613482 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.242141 ... 0.259450 0.036558 0.118314 -0.071866 -0.019577 0.151836 0.062167 0.031455 -0.104350 0.132424
Est Dia in Feet(min) -0.613482 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.242141 ... 0.259450 0.036558 0.118314 -0.071866 -0.019577 0.151836 0.062167 0.031455 -0.104350 0.132424
Est Dia in Feet(max) -0.613482 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.242141 ... 0.259450 0.036558 0.118314 -0.071866 -0.019577 0.151836 0.062167 0.031455 -0.104350 0.132424
Relative Velocity km per sec -0.376853 0.242141 0.242141 0.242141 0.242141 0.242141 0.242141 0.242141 0.242141 1.000000 ... 0.514657 -0.021301 0.017961 -0.506978 -0.002913 0.144782 0.020006 0.017685 0.022452 0.191970
Relative Velocity km per hr -0.376853 0.242141 0.242141 0.242141 0.242141 0.242141 0.242141 0.242141 0.242141 1.000000 ... 0.514657 -0.021301 0.017961 -0.506978 -0.002913 0.144782 0.020006 0.017685 0.022452 0.191970
Miles per hour -0.376853 0.242141 0.242141 0.242141 0.242141 0.242141 0.242141 0.242141 0.242141 1.000000 ... 0.514657 -0.021301 0.017961 -0.506978 -0.002913 0.144782 0.020006 0.017685 0.022452 0.191970
Miss Dist.(Astronomical) -0.339117 0.188027 0.188027 0.188027 0.188027 0.188027 0.188027 0.188027 0.188027 0.351694 ... 0.255828 -0.023033 -0.109888 -0.079937 -0.021483 -0.103231 0.189409 -0.010157 0.104642 0.032407
Miss Dist.(lunar) -0.339117 0.188027 0.188027 0.188027 0.188027 0.188027 0.188027 0.188027 0.188027 0.351694 ... 0.255828 -0.023033 -0.109888 -0.079937 -0.021483 -0.103231 0.189409 -0.010157 0.104642 0.032407
Miss Dist.(kilometers) -0.339117 0.188027 0.188027 0.188027 0.188027 0.188027 0.188027 0.188027 0.188027 0.351694 ... 0.255828 -0.023033 -0.109888 -0.079937 -0.021483 -0.103231 0.189409 -0.010157 0.104642 0.032407
Miss Dist.(miles) -0.339117 0.188027 0.188027 0.188027 0.188027 0.188027 0.188027 0.188027 0.188027 0.351694 ... 0.255828 -0.023033 -0.109888 -0.079937 -0.021483 -0.103231 0.189409 -0.010157 0.104642 0.032407
Orbit ID -0.575668 0.724089 0.724089 0.724089 0.724089 0.724089 0.724089 0.724089 0.724089 0.110679 ... 0.112125 0.047959 0.002705 -0.063884 0.001338 0.022269 0.037901 0.048985 -0.008898 0.247369
Orbit Uncertainity 0.677764 -0.399488 -0.399488 -0.399488 -0.399488 -0.399488 -0.399488 -0.399488 -0.399488 -0.202234 ... -0.228806 -0.009618 0.047535 0.107946 0.016307 0.020908 -0.325784 -0.059396 -0.023776 -0.328721
Minimum Orbit Intersection -0.488235 0.257904 0.257904 0.257904 0.257904 0.257904 0.257904 0.257904 0.257904 0.076306 ... 0.439867 -0.008963 0.279885 0.299991 -0.029130 0.242023 0.080592 -0.013336 -0.290538 -0.288949
Jupiter Tisserand Invariant 0.238702 -0.133582 -0.133582 -0.133582 -0.133582 -0.133582 -0.133582 -0.133582 -0.133582 -0.052294 ... -0.037366 0.018413 -0.893517 -0.537884 0.064496 -0.887879 0.051994 0.030972 0.992680 -0.003404
Epoch Osculation -0.116087 0.061582 0.061582 0.061582 0.061582 0.061582 0.061582 0.061582 0.061582 0.020194 ... 0.015879 0.017782 -0.056653 0.000093 -0.006703 -0.063625 0.977613 0.036881 0.045812 0.040940
Eccentricity -0.361359 0.216623 0.216623 0.216623 0.216623 0.216623 0.216623 0.216623 0.216623 0.495053 ... 0.039018 -0.015413 0.548521 -0.412612 -0.003210 0.701294 -0.064366 0.026161 -0.394860 0.183269
Semi Major Axis -0.212437 0.121224 0.121224 0.121224 0.121224 0.121224 0.121224 0.121224 0.121224 0.014351 ... -0.030325 -0.011073 0.995248 0.496847 -0.048999 0.975326 -0.059303 -0.026319 -0.901396 -0.010770
Inclination -0.459632 0.259450 0.259450 0.259450 0.259450 0.259450 0.259450 0.259450 0.259450 0.514657 ... 1.000000 -0.029160 -0.032227 -0.046215 0.003301 -0.021653 0.013727 0.015743 0.013188 0.009607
Asc Node Longitude -0.011470 0.036558 0.036558 0.036558 0.036558 0.036558 0.036558 0.036558 0.036558 -0.021301 ... -0.029160 1.000000 -0.009580 0.000182 -0.020012 -0.012245 0.020059 0.029477 0.017870 0.017536
Orbital Period -0.206774 0.118314 0.118314 0.118314 0.118314 0.118314 0.118314 0.118314 0.118314 0.017961 ... -0.032227 -0.009580 1.000000 0.467209 -0.044507 0.977630 -0.058549 -0.025304 -0.859462 -0.011168
Perihelion Distance 0.086966 -0.071866 -0.071866 -0.071866 -0.071866 -0.071866 -0.071866 -0.071866 -0.071866 -0.506978 ... -0.046215 0.000182 0.467209 1.000000 -0.053090 0.292995 -0.002854 -0.047114 -0.601118 -0.207027
Perihelion Arg 0.031784 -0.019577 -0.019577 -0.019577 -0.019577 -0.019577 -0.019577 -0.019577 -0.019577 -0.002913 ... 0.003301 -0.020012 -0.044507 -0.053090 1.000000 -0.040477 -0.004517 -0.027294 0.067008 -0.003865
Aphelion Dist -0.256169 0.151836 0.151836 0.151836 0.151836 0.151836 0.151836 0.151836 0.151836 0.144782 ... -0.021653 -0.012245 0.977630 0.292995 -0.040477 1.000000 -0.064609 -0.017011 -0.840166 0.040800
Perihelion Time -0.115855 0.062167 0.062167 0.062167 0.062167 0.062167 0.062167 0.062167 0.062167 0.020006 ... 0.013727 0.020059 -0.058549 -0.002854 -0.004517 -0.064609 1.000000 0.125563 0.047035 0.038113
Mean Anomaly -0.049401 0.031455 0.031455 0.031455 0.031455 0.031455 0.031455 0.031455 0.031455 0.017685 ... 0.015743 0.029477 -0.025304 -0.047114 -0.027294 -0.017011 0.125563 1.000000 0.035849 0.054164
Mean Motion 0.195652 -0.104350 -0.104350 -0.104350 -0.104350 -0.104350 -0.104350 -0.104350 -0.104350 0.022452 ... 0.013188 0.017870 -0.859462 -0.601118 0.067008 -0.840166 0.047035 0.035849 1.000000 0.013028
Hazardous -0.325522 0.132424 0.132424 0.132424 0.132424 0.132424 0.132424 0.132424 0.132424 0.191970 ... 0.009607 0.017536 -0.011168 -0.207027 -0.003865 0.040800 0.038113 0.054164 0.013028 1.000000

33 rows × 33 columns

The same measure of distance and velocities are given in different units of measurement thus making them duplicates.

In [8]:
# There are many column pairs with high correlation, thus acting as duplicates. 
# We can drop a column if there is a correlation > 0.95

final_columns = list(df.columns)    # maintaining a temporary list to remove columns from

for i in range(corr.shape[0]):
    for j in range(i+1, corr.shape[0]):
        if corr.iloc[i, j] >= 0.95:    # if very high correlation
            if list(df.columns)[j] in final_columns:    # if not aldready removed
                final_columns.remove(list(df.columns)[j])    # remove

df = df[final_columns]    # selecting only the required columns

df   
Out[8]:
Absolute Magnitude Est Dia in KM(min) Relative Velocity km per sec Miss Dist.(Astronomical) Orbit ID Orbit Uncertainity Minimum Orbit Intersection Jupiter Tisserand Invariant Epoch Osculation Eccentricity Semi Major Axis Inclination Asc Node Longitude Perihelion Distance Perihelion Arg Mean Anomaly Hazardous
0 21.600 0.127220 6.115834 0.419483 17 5 0.025282 4.634 2458000.5 0.425549 1.407011 6.025981 314.373913 0.808259 57.257470 264.837533 True
1 21.300 0.146068 18.113985 0.383014 21 3 0.186935 5.457 2458000.5 0.351674 1.107776 28.412996 136.717242 0.718200 313.091975 173.741112 False
2 20.300 0.231502 7.590711 0.050956 22 0 0.043058 4.557 2458000.5 0.348248 1.458824 4.237961 259.475979 0.950791 248.415038 292.893654 True
3 27.400 0.008801 11.173874 0.285322 7 6 0.005512 5.093 2458000.5 0.216578 1.255903 7.905894 57.173266 0.983902 18.707701 68.741007 False
4 21.600 0.127220 9.840831 0.407832 25 1 0.034798 5.154 2458000.5 0.210448 1.225615 16.793382 84.629307 0.967687 158.263596 135.142133 True
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
4682 23.900 0.044112 22.154265 0.041361 4 8 0.019777 5.156 2457637.5 0.361512 1.161429 39.880491 164.183305 0.741558 276.395697 304.306025 False
4683 28.200 0.006089 3.225150 0.006469 2 6 0.006451 5.742 2458000.5 0.073200 1.075134 5.360249 345.225230 0.996434 42.111064 282.978786 False
4684 22.700 0.076658 7.191642 0.061009 17 6 0.059973 4.410 2458000.5 0.368055 1.528234 4.405467 37.026468 0.965760 274.692712 203.501147 False
4685 21.800 0.116026 11.352090 0.260760 6 5 0.177510 4.477 2458000.5 0.202565 1.486600 21.080244 163.802910 1.185467 180.346090 203.524965 False
4686 19.109 0.400641 35.946852 0.462372 13 6 0.051777 4.108 2458000.5 0.405642 1.474045 53.574923 187.642183 0.876110 222.436688 184.820424 False

4687 rows × 17 columns

The number of columns have reduced a lot!

Converting to integer categorical variable

In [9]:
# Changin to int (0/1) from bool (False/True)

df['Hazardous'] = df['Hazardous'].astype('int')
/opt/tljh/user/lib/python3.7/site-packages/ipykernel_launcher.py:3: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  This is separate from the ipykernel package so we can avoid doing imports until

Balancing the dataset

In [10]:
# Spread of values in categories

df['Hazardous'].value_counts()
Out[10]:
0    3932
1     755
Name: Hazardous, dtype: int64

There is high imbalance.

Here, we resample records from the category with fewer ones to match the higher category count.

In [11]:
# Spltting into one dataframe for each category.
df_h = df[df['Hazardous'] == 1]
df_nh = df[df['Hazardous'] == 0]

# Resampling
df_h = df_h.sample(len(df_nh), replace = True)

# Concatenating the two to form a single dataset
df = df_h.append(df_nh)

# Spread of values in categories
df['Hazardous'].value_counts()
Out[11]:
1    3932
0    3932
Name: Hazardous, dtype: int64

Train test split

In [12]:
# defining the input and output columns to separate the dataset in the later cells.

input_columns = list(df.columns[:-1])
output_columns = [df.columns[-1]]

print("Number of input columns: ", len(input_columns))
#print("Input columns: ", ', '.join(input_columns))

print("Number of output columns: ", len(output_columns))
#print("Output columns: ", ', '.join(output_columns))
Number of input columns:  16
Number of output columns:  1
In [13]:
# Splitting into train, val and test set -- 80-10-10 split

# First, an 80-20 split
train_df, val_test_df = train_test_split(df, test_size = 0.2, random_state = 113)

# Then split the 20% into half
val_df, test_df = train_test_split(val_test_df, test_size = 0.5, random_state = 113)

print("Number of samples in...")
print("Training set: ", len(train_df))
print("Validation set: ", len(val_df))
print("Testing set: ", len(test_df))
Number of samples in...
Training set:  6291
Validation set:  786
Testing set:  787
In [14]:
# Splitting into X (input) and y (output)

Xtrain, ytrain = np.array(train_df[input_columns]), np.array(train_df[output_columns])

Xval, yval = np.array(val_df[input_columns]), np.array(val_df[output_columns])

Xtest, ytest = np.array(test_df[input_columns]), np.array(test_df[output_columns])

Scaling

In [15]:
# Each feature has a different range. 
# Using min_max_scaler to scale them to values in the range [0,1].

min_max_scaler = MinMaxScaler()

# Fit on training set alone
Xtrain = min_max_scaler.fit_transform(Xtrain)

# Use it to transform val and test input
Xval = min_max_scaler.transform(Xval)
Xtest = min_max_scaler.transform(Xtest)

The model

In [16]:
model = Sequential([
    Dense(256, activation = 'relu', input_shape = Xtrain[0].shape),
    Dense(128, activation = 'relu'),
    Dense(32, activation='relu'),
    Dense(1, activation = 'sigmoid')
])

cb = [EarlyStopping(monitor = 'val_loss', patience = 5, restore_best_weights = True)]
model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense (Dense)                (None, 256)               4352      
_________________________________________________________________
dense_1 (Dense)              (None, 128)               32896     
_________________________________________________________________
dense_2 (Dense)              (None, 32)                4128      
_________________________________________________________________
dense_3 (Dense)              (None, 1)                 33        
=================================================================
Total params: 41,409
Trainable params: 41,409
Non-trainable params: 0
_________________________________________________________________
In [17]:
model.compile(optimizer = Adam(0.001), loss = BinaryCrossentropy(), metrics=['accuracy'])

history = model.fit(Xtrain, ytrain, validation_data = (Xval, yval), epochs = 256, callbacks = cb)
Epoch 1/256
197/197 [==============================] - 0s 2ms/step - loss: 0.3604 - accuracy: 0.8442 - val_loss: 0.1967 - val_accuracy: 0.9186
Epoch 2/256
197/197 [==============================] - 0s 2ms/step - loss: 0.1840 - accuracy: 0.9302 - val_loss: 0.1235 - val_accuracy: 0.9478
Epoch 3/256
197/197 [==============================] - 0s 2ms/step - loss: 0.1379 - accuracy: 0.9467 - val_loss: 0.0970 - val_accuracy: 0.9682
Epoch 4/256
197/197 [==============================] - 0s 2ms/step - loss: 0.1374 - accuracy: 0.9461 - val_loss: 0.0788 - val_accuracy: 0.9771
Epoch 5/256
197/197 [==============================] - 0s 2ms/step - loss: 0.1086 - accuracy: 0.9584 - val_loss: 0.0936 - val_accuracy: 0.9707
Epoch 6/256
197/197 [==============================] - 0s 2ms/step - loss: 0.1007 - accuracy: 0.9620 - val_loss: 0.0704 - val_accuracy: 0.9771
Epoch 7/256
197/197 [==============================] - 0s 2ms/step - loss: 0.0864 - accuracy: 0.9685 - val_loss: 0.0516 - val_accuracy: 0.9822
Epoch 8/256
197/197 [==============================] - 0s 2ms/step - loss: 0.0947 - accuracy: 0.9646 - val_loss: 0.1609 - val_accuracy: 0.9377
Epoch 9/256
197/197 [==============================] - 0s 2ms/step - loss: 0.0792 - accuracy: 0.9706 - val_loss: 0.0421 - val_accuracy: 0.9860
Epoch 10/256
197/197 [==============================] - 0s 2ms/step - loss: 0.0606 - accuracy: 0.9795 - val_loss: 0.0381 - val_accuracy: 0.9860
Epoch 11/256
197/197 [==============================] - 0s 2ms/step - loss: 0.0551 - accuracy: 0.9812 - val_loss: 0.1422 - val_accuracy: 0.9237
Epoch 12/256
197/197 [==============================] - 0s 2ms/step - loss: 0.0696 - accuracy: 0.9752 - val_loss: 0.0316 - val_accuracy: 0.9924
Epoch 13/256
197/197 [==============================] - 0s 2ms/step - loss: 0.0517 - accuracy: 0.9830 - val_loss: 0.0365 - val_accuracy: 0.9898
Epoch 14/256
197/197 [==============================] - 0s 2ms/step - loss: 0.0459 - accuracy: 0.9830 - val_loss: 0.0302 - val_accuracy: 0.9860
Epoch 15/256
197/197 [==============================] - 0s 2ms/step - loss: 0.0618 - accuracy: 0.9776 - val_loss: 0.0300 - val_accuracy: 0.9898
Epoch 16/256
197/197 [==============================] - 0s 2ms/step - loss: 0.0411 - accuracy: 0.9855 - val_loss: 0.0228 - val_accuracy: 0.9911
Epoch 17/256
197/197 [==============================] - 0s 2ms/step - loss: 0.0376 - accuracy: 0.9866 - val_loss: 0.0275 - val_accuracy: 0.9898
Epoch 18/256
197/197 [==============================] - 0s 2ms/step - loss: 0.0507 - accuracy: 0.9817 - val_loss: 0.0368 - val_accuracy: 0.9835
Epoch 19/256
197/197 [==============================] - 0s 2ms/step - loss: 0.0375 - accuracy: 0.9854 - val_loss: 0.0230 - val_accuracy: 0.9949
Epoch 20/256
197/197 [==============================] - 0s 2ms/step - loss: 0.0445 - accuracy: 0.9836 - val_loss: 0.0170 - val_accuracy: 0.9924
Epoch 21/256
197/197 [==============================] - 0s 2ms/step - loss: 0.0287 - accuracy: 0.9895 - val_loss: 0.0764 - val_accuracy: 0.9644
Epoch 22/256
197/197 [==============================] - 0s 2ms/step - loss: 0.0354 - accuracy: 0.9868 - val_loss: 0.0142 - val_accuracy: 0.9949
Epoch 23/256
197/197 [==============================] - 0s 2ms/step - loss: 0.0250 - accuracy: 0.9914 - val_loss: 0.0255 - val_accuracy: 0.9898
Epoch 24/256
197/197 [==============================] - 0s 2ms/step - loss: 0.0338 - accuracy: 0.9870 - val_loss: 0.0248 - val_accuracy: 0.9860
Epoch 25/256
197/197 [==============================] - 0s 2ms/step - loss: 0.0265 - accuracy: 0.9909 - val_loss: 0.0191 - val_accuracy: 0.9975
Epoch 26/256
197/197 [==============================] - 0s 2ms/step - loss: 0.0328 - accuracy: 0.9881 - val_loss: 0.0344 - val_accuracy: 0.9911
Epoch 27/256
197/197 [==============================] - 0s 2ms/step - loss: 0.0199 - accuracy: 0.9936 - val_loss: 0.0179 - val_accuracy: 0.9911
In [18]:
model.evaluate(Xtest, ytest)
25/25 [==============================] - 0s 972us/step - loss: 0.0296 - accuracy: 0.9898
Out[18]:
[0.029643328860402107, 0.9898348450660706]
In [19]:
cm = confusion_matrix(ytest, (model.predict(Xtest)>0.5).astype('int'))
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

for i in range(cm.shape[1]):
    for j in range(cm.shape[0]):
        plt.text(j, i, format(cm[i, j], '.2f'), horizontalalignment="center", color="black")


plt.imshow(cm, cmap=plt.cm.Blues)
Out[19]:
<matplotlib.image.AxesImage at 0x7f63086d6780>

It is important to avoid false negatives (cell [1, 0] in matrix) in this type of problems. False negative is the classifiction of a hazardous asteroid as non-hazardous. A larger training set will help.

Plotting the metrics

In [20]:
def plot(history, variable, variable1):
    plt.plot(range(len(history[variable])), history[variable])
    plt.plot(range(len(history[variable1])), history[variable1])
    plt.title(variable)
    plt.legend([variable, variable1])
In [21]:
plot(history.history, "accuracy", "val_accuracy")
In [22]:
plot(history.history, "loss", "val_loss")

Prediction

In [23]:
# Defining output labels in accoudance with their array indices.

output_labels = ['Non-hazardous', 'Hazardous']
In [24]:
# Pick random test sample
i = random.randint(0, len(test_df)-1)

model_output = model.predict(Xtest[i].reshape(1, -1))[0][0]
pred = (model_output>0.5).astype('int')

# show predicted output
print ("\nModel predicted : ", output_labels[pred], "(", model_output, "-->", pred, ")")

# actual output
print("Actual asteroid type : ", output_labels[ytest[i][0]])
Model predicted :  Non-hazardous ( 1.6827298e-09 --> 0 )
Actual asteroid type :  Non-hazardous

deepC

In [25]:
model.save('asteroid.h5')

!deepCC asteroid.h5
[INFO]
Reading [keras model] 'asteroid.h5'
[SUCCESS]
Saved 'asteroid_deepC/asteroid.onnx'
[INFO]
Reading [onnx model] 'asteroid_deepC/asteroid.onnx'
[INFO]
Model info:
  ir_vesion : 4
  doc       : 
[WARNING]
[ONNX]: terminal (input/output) dense_input's shape is less than 1. Changing it to 1.
[WARNING]
[ONNX]: terminal (input/output) dense_3's shape is less than 1. Changing it to 1.
WARN (GRAPH): found operator node with the same name (dense_3) as io node.
[INFO]
Running DNNC graph sanity check ...
[SUCCESS]
Passed sanity check.
[INFO]
Writing C++ file 'asteroid_deepC/asteroid.cpp'
[INFO]
deepSea model files are ready in 'asteroid_deepC/' 
[RUNNING COMMAND]
g++ -std=c++11 -O3 -fno-rtti -fno-exceptions -I. -I/opt/tljh/user/lib/python3.7/site-packages/deepC-0.13-py3.7-linux-x86_64.egg/deepC/include -isystem /opt/tljh/user/lib/python3.7/site-packages/deepC-0.13-py3.7-linux-x86_64.egg/deepC/packages/eigen-eigen-323c052e1731 "asteroid_deepC/asteroid.cpp" -D_AITS_MAIN -o "asteroid_deepC/asteroid.exe"
[RUNNING COMMAND]
size "asteroid_deepC/asteroid.exe"
   text	   data	    bss	    dec	    hex	filename
 285323	   2968	    760	 289051	  4691b	asteroid_deepC/asteroid.exe
[SUCCESS]
Saved model as executable "asteroid_deepC/asteroid.exe"
In [26]:
# Pick random test sample
i = random.randint(0, len(test_df)-1)

np.savetxt('sample.data', Xtest[i])

# run exe with input
!asteroid_deepC/asteroid.exe sample.data

# show predicted output
nn_out = np.loadtxt('deepSea_result_1.out')
pred = (nn_out>0.5).astype('int')
print ("\nModel predicted : ",  output_labels[pred], "(", nn_out, "-->", pred, ")")

# actual output
print("Actual asteroid type : ", output_labels[ytest[i][0]])
writing file deepSea_result_1.out.

Model predicted :  Non-hazardous ( 3.86359e-15 --> 0 )
Actual asteroid type :  Non-hazardous