In [1]:
!wget -N "https://cainvas-static.s3.amazonaws.com/media/user_data/cainvas-admin/obj.zip"
!unzip -qo obj.zip
!rm obj.zip
Importing Libraries
In [2]:
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as img
%matplotlib inline
import tensorflow.keras.backend as K
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.preprocessing import image
from pylab import imread,subplot,imshow,show
import cv2
import os
Rescaling
In [3]:
train = ImageDataGenerator(rescale=1./255)
test = ImageDataGenerator(rescale=1./255)
val = ImageDataGenerator(rescale=1./255)
In [4]:
train='Obclass/train/'
In [5]:
train_data = tf.keras.preprocessing.image_dataset_from_directory(
train,
validation_split=0.2,
image_size=(224,224),
batch_size=30,
subset='training',
seed=500 )
In [6]:
val='Obclass/train/'
In [7]:
val_data = tf.keras.preprocessing.image_dataset_from_directory(
val,
validation_split=0.2,
image_size=(224,224),
batch_size=30,
subset='validation',
seed=500
)
In [8]:
test='Obclass/test/'
In [9]:
test_data=tf.keras.preprocessing.image_dataset_from_directory(
test,
image_size=(224,224),
batch_size=30,
seed=500
)
In [10]:
print(val_data)
print(train_data)
print(test_data)
In [11]:
class_names = ['ELectric Bus', 'Electric Car']
In [12]:
train_data.class_names = class_names
val_data.class_names = class_names
In [13]:
plt.figure(figsize=(14, 14))
for images, labels in train_data.take(1):
for i in range(9):
ax = plt.subplot(3, 3, i + 1)
plt.imshow(images[i].numpy().astype("uint8"))
plt.title(train_data.class_names[labels[i]])
plt.axis("off")